Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

From a Zwitterionic Phosphasilene to Base Stabilized Silyliumylidene-Phosphide and Bis(silylene) Complexes

Authors: Daniel Gallego; Shigeyoshi Inoue; Nora C. Breit; Tibor Szilvási; Tsuyoshi Suzuki;

From a Zwitterionic Phosphasilene to Base Stabilized Silyliumylidene-Phosphide and Bis(silylene) Complexes

Abstract

The reactivity of ylide-like phosphasilene 1 [LSi(TMS)═P(TMS), L = PhC(NtBu)2] with group 10 d(10) transition metals is reported. For the first time, a reaction of a phosphasilene with a transition metal that actually involves the silicon-phosphorus double bond was found. In the reaction of 1 with ethylene bis(triphenylphosphine) platinum(0), a complete silicon-phosphorus bond breakage occurs, yielding the unprecedented dinuclear platinum complex 3 [LSi{Pt(PPh3)}2P(TMS)2]. Spectroscopic, structural, and theoretical analysis of complex 3 revealed the cationic silylene (silyliumylidene) character of the silicon unit in complex 3. Similarly, formation of the analogous dinuclear palladium complex 4 [LSi{Pd(PPh3)}2P(TMS)2] from tetrakis(triphenylphosphine) palladium(0) was observed. On the other hand, in the case of bis(cyclooctadiene) nickel(0) as starting material, a distinctively different product, the bis(silylene) nickel complex 5 [{(LSi)2P(TMS)}Ni(COD)], was obtained. Complex 5 was fully characterized including X-ray diffraction analysis. Density functional theory calculations of the reaction mechanisms showed that the migration of the TMS group in the case of platinum and palladium was induced by the oxidative addition of the transition metal into the silicon-silicon bond. The respective platinum intermediate 2 [LSi{Pt(TMS)(PPh3)}P(TMS)] was also experimentally observed. This is contrasted by the reaction of nickel, in which the equilibrium of phosphasilene 1 and the phosphinosilylene 6 [LSiP(TMS)2] was utilized for a better coordination of the silicon(II) moiety in comparison with phosphorus to the transition metal center.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?