Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Down-regulation of the Human MYC Gene by the Nuclear Hormone 1α,25-dihydroxyvitamin D3 is Associated with Cycling of Corepressors and Histone Deacetylases

Authors: Sari, Toropainen; Sami, Väisänen; Sami, Heikkinen; Carsten, Carlberg;

The Down-regulation of the Human MYC Gene by the Nuclear Hormone 1α,25-dihydroxyvitamin D3 is Associated with Cycling of Corepressors and Histone Deacetylases

Abstract

MYC is a pleiotropic transcription factor that coordinates the expression of diverse programs that are together necessary for the growth and expansion of somatic cells. The nuclear hormone 1alpha,25-dihydroxyvitamin D(3) down-regulates MYC expression, but the exact mechanism is still elusive. We found in RWPE-1 normal human prostate cells that 1alpha,25-dihydroxyvitamin D(3) down-regulates MYC mRNA with a periodicity of 30-90 min. In silico screening of the MYC gene locus identified six putative binding sites [vitamin D response elements (VDREs)] for the vitamin D receptor (VDR). Two of these VDREs efficiently bound VDR-retinoid X receptor heterodimers in vitro, and their genomic regions associated with VDR in RWPE-1 cells. Gene-specific small inhibitory RNA silencing indicated that basal MYC mRNA expression, as well as its down-regulation, depended on the exchange factor TBL1X (transducer beta-like 1, X-linked), the corepressor silencing mediator for retinoid and thyroid hormone receptor, and histone deacetylases (HDACs) 2, 6, and 11. Assaying the association of these five proteins with the VDRE-containing genomic regions of the MYC gene locus showed characteristic ligand-dependent profiles of TBL1X, silencing mediator for retinoid and thyroid hormone receptor, HDAC6, and HDAC11, in particular on an evolutionarily conserved VDRE. In conclusion, our data suggest that dynamically composed protein complexes that dock via VDR to the two VDREs may explain the repression of the MYC gene.

Related Organizations
Keywords

Down-Regulation, Histone Deacetylase 2, Histone Deacetylase 6, Vitamin D Response Element, Models, Biological, Histone Deacetylases, Proto-Oncogene Proteins c-myc, Calcitriol, Humans, Transducin, Co-Repressor Proteins, Cells, Cultured, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!