Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Medical Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Medical Genetics
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Medical Genetics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2003
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Medical Genetics
Article
License: Springer TDM
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Medical Genetics
Article . 2003
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

HLA-A and -B alleles and haplotypes in 240 index patients with common variable immunodeficiency and selective IgG subclass deficiency in central Alabama

Authors: Barton James C; Bertoli Luigi F; Acton Ronald T;

HLA-A and -B alleles and haplotypes in 240 index patients with common variable immunodeficiency and selective IgG subclass deficiency in central Alabama

Abstract

We wanted to quantify HLA-A and -B phenotype and haplotype frequencies in Alabama index patients with common variable immunodeficiency (CVID) and selective IgG subclass deficiency (IgGSD), and in control subjects.Phenotypes were detected using DNA-based typing (index cases) and microlymphocytotoxicity typing (controls).A and B phenotypes were determined in 240 index cases (114 CVID, 126 IgGSD) and 1,321 controls and haplotypes in 195 index cases and 751 controls. Phenotyping revealed that the "uncorrected" frequencies of A*24, B*14, B*15, B*35, B*40, B*49, and B*50 were significantly greater in index cases, and frequencies of B*35, B*58, B*62 were significantly lower in index cases. After Bonferroni corrections, the frequencies of phenotypes A*24, B*14, and B*40 were significantly greater in index cases, and the frequency of B*62 was significantly lower in index cases. The most common haplotypes in index cases were A*02-B*44 (frequency 0.1385), A*01-B*08 (frequency 0.1308), and A*03-B*07 (frequency 0.1000), and the frequency of each was significantly greater in index cases than in control subjects ("uncorrected" values of p < 0.0001, 0.0252, and 0.0011, respectively). After performing Bonferroni corrections, however, the frequency of A*02-B*44 alone was significantly increased in probands (p < 0.0085). Three other haplotypes were also significantly more frequent in index cases (A*03-B*14, A*31-B*40, and A*32-B*14). The combined frequencies of three latter haplotypes in index patients and control subjects were 0.0411 and 0.0126, respectively ("uncorrected" value of p < 0.0002; "corrected" value of p = 0.0166). Most phenotype and haplotype frequencies in CVID and IgGSD were similar. 26.7% of index patients were HLA-haploidentical with one or more other index patients. We diagnosed CVID or IgGSD in first-degree or other relatives of 26 of 195 index patients for whom HLA-A and -B haplotypes had been ascertained; A*01-B*08, A*02-B*44, and A*29-B*44 were most frequently associated with CVID or IgGSD in these families. We conservatively estimated the combined population frequency of CVID and IgGSD to be 0.0092 in adults, based on the occurrence of CVID and IgGSD in spouses of the index cases.CVID and IgGSD in adults are significantly associated with several HLA haplotypes, many of which are also common in the Alabama Caucasian population. Immunoglobulin phenotype variability demonstrated in index cases and family studies herein suggests that there are multiple gene(s) on Ch6p or other chromosomes that modify immunoglobulin phenotypes of CVID and IgGSD. The estimated prevalence of CVID and IgGSD in central Alabama could be reasonably attributed to the fact that many HLA haplotypes significantly associated with these disorders are also common in the general population.

Keywords

Adult, Male, haplotype, IgG subclass deficiency, QH426-470, hemochromatosis, Gene Frequency, Genetics, Humans, Genetics(clinical), IgG Deficiency, Internal medicine, Alleles, Aged, Family Health, HLA-A Antigens, common variable immunodeficiency, population genetics, Middle Aged, RC31-1245, Pedigree, HLA, <it>HFE</it>, Common Variable Immunodeficiency, Phenotype, Haplotypes, HLA-B Antigens, Immunoglobulin G, Alabama, Female, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%
Green
gold