
arXiv: 1901.08003
Celestial objects exhibit a wide range of variability in brightness at different wavebands. Surprisingly, the most common methods for characterizing time series in statistics -- parametric autoregressive modeling -- is rarely used to interpret astronomical light curves. We review standard ARMA, ARIMA and ARFIMA (autoregressive moving average fractionally integrated) models that treat short-memory autocorrelation, long-memory $1/f^��$ `red noise', and nonstationary trends. Though designed for evenly spaced time series, moderately irregular cadences can be treated as evenly-spaced time series with missing data. Fitting algorithms are efficient and software implementations are widely available. We apply ARIMA models to light curves of four variable stars, discussing their effectiveness for different temporal characteristics. A variety of extensions to ARIMA are outlined, with emphasis on recently developed continuous-time models like CARMA and CARFIMA designed for irregularly spaced time series. Strengths and weakness of ARIMA-type modeling for astronomical data analysis and astrophysical insights are reviewed.
17 pages, 4 figures, published in 'Frontiers of Physics', vol 6, id. 80 (2018)
irregularly sampled time series, time series analysis, Physics, QC1-999, quasars, time domain astronomy, statistical methods, FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, variable stars, Instrumentation and Methods for Astrophysics (astro-ph.IM)
irregularly sampled time series, time series analysis, Physics, QC1-999, quasars, time domain astronomy, statistical methods, FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, variable stars, Instrumentation and Methods for Astrophysics (astro-ph.IM)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
