Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY NC ND
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SpeechEE: A Novel Benchmark for Speech Event Extraction

Authors: Bin Wang 0004; Meishan Zhang; Hao Fei 0001; Yu Zhao 0043; Bobo Li; Shengqiong Wu; Wei Ji 0008; +1 Authors

SpeechEE: A Novel Benchmark for Speech Event Extraction

Abstract

Event extraction (EE) is a critical direction in the field of information extraction, laying an important foundation for the construction of structured knowledge bases. EE from text has received ample research and attention for years, yet there can be numerous real-world applications that require direct information acquisition from speech signals, online meeting minutes, interview summaries, press releases, etc. While EE from speech has remained under-explored, this paper fills the gap by pioneering a SpeechEE, defined as detecting the event predicates and arguments from a given audio speech. To benchmark the SpeechEE task, we first construct a large-scale high-quality dataset. Based on textual EE datasets under the sentence, document, and dialogue scenarios, we convert texts into speeches through both manual real-person narration and automatic synthesis, empowering the data with diverse scenarios, languages, domains, ambiences, and speaker styles. Further, to effectively address the key challenges in the task, we tailor an E2E SpeechEE system based on the encoder-decoder architecture, where a novel Shrinking Unit module and a retrieval-aided decoding mechanism are devised. Extensive experimental results on all SpeechEE subsets demonstrate the efficacy of the proposed model, offering a strong baseline for the task. At last, being the first work on this topic, we shed light on key directions for future research.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Multimedia, Multimedia (cs.MM)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities