
arXiv: 2408.09462
Event extraction (EE) is a critical direction in the field of information extraction, laying an important foundation for the construction of structured knowledge bases. EE from text has received ample research and attention for years, yet there can be numerous real-world applications that require direct information acquisition from speech signals, online meeting minutes, interview summaries, press releases, etc. While EE from speech has remained under-explored, this paper fills the gap by pioneering a SpeechEE, defined as detecting the event predicates and arguments from a given audio speech. To benchmark the SpeechEE task, we first construct a large-scale high-quality dataset. Based on textual EE datasets under the sentence, document, and dialogue scenarios, we convert texts into speeches through both manual real-person narration and automatic synthesis, empowering the data with diverse scenarios, languages, domains, ambiences, and speaker styles. Further, to effectively address the key challenges in the task, we tailor an E2E SpeechEE system based on the encoder-decoder architecture, where a novel Shrinking Unit module and a retrieval-aided decoding mechanism are devised. Extensive experimental results on all SpeechEE subsets demonstrate the efficacy of the proposed model, offering a strong baseline for the task. At last, being the first work on this topic, we shed light on key directions for future research.
FOS: Computer and information sciences, Computer Science - Multimedia, Multimedia (cs.MM)
FOS: Computer and information sciences, Computer Science - Multimedia, Multimedia (cs.MM)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
