Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The FASEB Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neurotoxicity from innate immune response is greatest with targeted replacement of ε4 allele of apolipoprotein E gene and is mediated by microglial p38MAPK

Authors: Izumi, Maezawa; Mary, Nivison; Kathleen S, Montine; Nobuyo, Maeda; Thomas J, Montine;

Neurotoxicity from innate immune response is greatest with targeted replacement of ε4 allele of apolipoprotein E gene and is mediated by microglial p38MAPK

Abstract

ABSTRACT Inheritance of APOE alleles is associated with varying clinical outcomes in several neurodegenerative diseases that are associated with innate immune response in brain. We tested the hypothesis that inheritance of different APOE alleles would significantly modulate neurotoxicity arising from glial innate immune response. We first used dissociated cultures of wild‐type (wt) murine neurons and glia derived from mice with targeted replacement (TR) of the ε2, ε3, or, ε4 APOE allele. Our results showed that the vast majority of bystander damage to wt neurons derived from microglia was greatest with TR APOE4 glia, intermediate from TR APOE3 glia, and least from TR APOE2 glia and preceded detectable NO secretion. Microglial p38MAPK‐dependent cytokine secretion followed a similar pattern of TR APOE dependence. In hippocampal slice cultures, innate immune activation had a similar pattern of TR APOE‐dependence and produced postsynaptic neuronal damage in TR APOE4 and TR APOE3 but not TR APOE2 cultures that was p38MAPK dependent. These findings suggest a new mechanism by which inheritance of different APOE alleles may influence the outcome of neurodegenerative diseases associated with microglial innate immune response.

Keywords

Neurons, Apolipoprotein E4, Mice, Transgenic, p38 Mitogen-Activated Protein Kinases, Gene Expression Regulation, Enzymologic, Immunity, Innate, Mice, Apolipoproteins E, Astrocytes, Animals, Cytokines, Microglia, Alleles, Cells, Cultured, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!