Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hereon Publication D...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MRS Proceedings
Article . 2013 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ABA triblock copolymer based hydrogels with thermo-sensitivity for biomedical applications

Authors: Tartivel, L.; Behl, M.; Schroeter, M.; Lendlein, A.;

ABA triblock copolymer based hydrogels with thermo-sensitivity for biomedical applications

Abstract

ABSTRACTOligo(ethylene glycol)-oligo(propylene glycol)-oligo(ethylene glycol) (OEG-OPG-OEG) triblock copolymers are hydrogel forming and extensively investigated in the field of drug release due to their biocompatibility and thermo-sensitivity. Here the synthesis and characterization of OEG-OPG-OEG based polymer networks from methacrylated oligomers by photo-irradiation are reported. Two precursors were selected to have comparable hydrophilicity (80 wt% OEG content) but different molecular weights of Mn = 8400 g·mol-1 and 14600 g·mol-1. The precursor solutions were prepared in concentration 10 to 30 wt%. The resulting polymer networks prepared from high Mn precursors exhibited higher swellability at equilibrium (up to 3400%) and mechanical properties in the range of G’ ∼ 0.1 to 1 kPa at 5 °C compared to networks based on low Mn precursors. A more significant thermo-sensitive behavior in terms of swellability, volumetric contraction and mechanical transition, starting at 30 °C could also be observed for the networks based on high Mn precursors, thus promoting future application in the field of drug release.

Related Organizations
Keywords

ddc: ddc:610

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green