
During a chronic infection such as tuberculosis, the pool of tissue dendritic cells (DC) must be renewed by recruitment of both circulating DC progenitors and monocytes (Mo). However, the microenvironment of the inflammatory site affects Mo differentiation. As DC are critical for initiating a Mycobacterium tuberculosis‐specific T‐cell response, we argue that interference of M. tuberculosis with a correct DC generation would signify a mechanism of immune evasion. In this study, we showed that early interaction of γ‐irradiated M. tuberculosis with Mo subverts DC differentiation in vitro. We found that irradiated M. tuberculosis effect involves (1) the loss of a significant fraction of monocyte population and (2) an altered differentiation process of the surviving monocyte subpopulation. Moreover, in the absence of irradiated M. tuberculosis, DC consist in a major DC‐specific intercellular adhesion molecule 3‐grabbing non‐integrin receptor (DC‐SIGNhigh)/CD86low and minor DC‐SIGNlow/CD86high subpopulations, whereas in the presence of bacteria, there is an enrichment of DC‐SIGNlow/CD86high population. Besides, this population enlarged by irradiated M. tuberculosis, which is characterized by a reduced CD1b expression, correlates with a reduced induction of specific T‐lymphocyte proliferation. The loss of CD1molecules partially involves toll‐like receptors (TLR‐2)/p38 MAPK activation. Finally, several features of Mo, which have been differentiated into DC in the presence of irradiated M. tuberculosis, resemble the features of DC obtained from patients with active tuberculosis. In conclusion, we suggest that M. tuberculosis escapes from acquired immune response in tuberculosis may be caused by an altered differentiation into DC leading to a poor M. tuberculosis‐specific T‐cell response.
Adult, IMMUNE EVASION, Receptors, Cell Surface, MONOCYTE DIFFERENTIATION, Antigens, CD1, https://purl.org/becyt/ford/3.3, ANTIGEN PRESENTATION, Humans, Tuberculosis, Lectins, C-Type, https://purl.org/becyt/ford/3, Cells, Cultured, Cell Proliferation, Macrophages, Cell Differentiation, Dendritic Cells, Mycobacterium tuberculosis, Middle Aged, Toll-Like Receptor 2, Interleukin-10, Mannose-Binding Lectins, B7-2 Antigen, Lymphocyte Culture Test, Mixed, MYCOBACTERIATUBERCULOSIS, Cell Adhesion Molecules, Mannose Receptor
Adult, IMMUNE EVASION, Receptors, Cell Surface, MONOCYTE DIFFERENTIATION, Antigens, CD1, https://purl.org/becyt/ford/3.3, ANTIGEN PRESENTATION, Humans, Tuberculosis, Lectins, C-Type, https://purl.org/becyt/ford/3, Cells, Cultured, Cell Proliferation, Macrophages, Cell Differentiation, Dendritic Cells, Mycobacterium tuberculosis, Middle Aged, Toll-Like Receptor 2, Interleukin-10, Mannose-Binding Lectins, B7-2 Antigen, Lymphocyte Culture Test, Mixed, MYCOBACTERIATUBERCULOSIS, Cell Adhesion Molecules, Mannose Receptor
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
