
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10261/236111
We suggest a general relation between the position of the cosmic microwave background temperature power spectrum peaks and the inflationary slow roll parameter $��$. This relation is based on interpreting the variable setting the position of the peaks as the quantum distance between the end of inflation and recombination. This distance is determined by the primordial cosmological Fisher information introduced in arXiv:2002.04294. The observational constraints set by cosmic microwave background temperature data lead to a very stringent prediction for the value of the tensor-to-scalar ratio: $r=0.01 \pm 0.002$. Future polarization data of the cosmic microwave background should be able to measure this signal and corroborate or discard our model.
matches accepted version to JCAP
High Energy Physics - Theory, Quantum Physics, Cosmology and Nongalactic Astrophysics (astro-ph.CO), High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Quantum Physics (quant-ph), General Relativity and Quantum Cosmology, Astrophysics - Cosmology and Nongalactic Astrophysics
High Energy Physics - Theory, Quantum Physics, Cosmology and Nongalactic Astrophysics (astro-ph.CO), High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Quantum Physics (quant-ph), General Relativity and Quantum Cosmology, Astrophysics - Cosmology and Nongalactic Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 27 | |
downloads | 16 |