<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 15617679
Many studies have focused on the mechanisms of axon guidance; however, little is known about the transcriptional control of the navigational components that carryout these decisions. This report describes the functional analysis of Nerfin-1, a nuclear regulator of axon guidance required for a subset of early pathfinding events in the developing Drosophila CNS. Nerfin-1 belongs to a highly conserved subfamily of Zn-finger proteins with cognates identified in nematodes and man. We show that the neural precursor gene prospero is essential for nerfin-1 expression. Unlike nerfin-1 mRNA, which is expressed in many neural precursor cells, the encoded Nerfin-1 protein is only detected in the nuclei of neuronal precursors that will divide just once and then transiently in their nascent neurons. Although nerfin-1 null embryos have no discernible alterations in neural lineage development nor in neuronal or glial identities, CNS pioneering neurons require nerfin-1 function for early axon guidance decisions. Furthermore, nerfin-1 is required for the proper development of commissural and connective axon fascicles. Our studies also show that Nerfin-1 is essential for the proper expression of robo2, wnt5, derailed, G-oalpha47A, Lar, and futsch, genes whose encoded proteins participate in these early navigational events.
Central Nervous System, CNS development, Nerfin-1, Axon guidance, Gene Expression Regulation, Developmental, Nuclear Proteins, Nerve Tissue Proteins, Cell Biology, Immunohistochemistry, EIN domain Zn-finger proteins, Axons, Gene Components, Transformation, Genetic, Animals, Drosophila Proteins, Drosophila, Molecular Biology, In Situ Hybridization, Developmental Biology, Transcription Factors
Central Nervous System, CNS development, Nerfin-1, Axon guidance, Gene Expression Regulation, Developmental, Nuclear Proteins, Nerve Tissue Proteins, Cell Biology, Immunohistochemistry, EIN domain Zn-finger proteins, Axons, Gene Components, Transformation, Genetic, Animals, Drosophila Proteins, Drosophila, Molecular Biology, In Situ Hybridization, Developmental Biology, Transcription Factors
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |