
AbstractMembers of the plant type I MADS domain subfamily have been reported to be involved in reproductive development in Arabidopsis (Arabidopsis thaliana). However, from the 61 type I genes in the Arabidopsis genome, only PHERES1, AGAMOUS-LIKE80 (AGL80), DIANA, AGL62, and AGL23 have been functionally characterized, which revealed important roles for these genes during female gametophyte and early seed development. The functions of the other genes are still unknown, despite the fact that the available single T-DNA insertion mutants have been largely investigated. The lack of mutant phenotypes is likely due to a considerable number of recent intrachromosomal duplications in the type I subfamily, resulting in nonfunctional genes in addition to a high level of redundancy. To enable a breakthrough in type I MADS box gene characterization, a framework needs to be established that allows the prediction of the functionality and redundancy of the type I genes. Here, we present a complete atlas of their expression patterns during female gametophyte and seed development in Arabidopsis, deduced from reporter lines containing translational fusions of the genes to green fluorescent protein and β-glucuronidase. All the expressed genes were revealed to be active in the female gametophyte or developing seed, indicating that the entire type I subfamily is involved in reproductive development in Arabidopsis. Interestingly, expression was predominantly observed in the central cell, antipodal cells, and chalazal endosperm. The combination of our expression results with phylogenetic and protein interaction data allows a better identification of putative redundantly acting genes and provides a useful tool for the functional characterization of the type I MADS box genes in Arabidopsis.
polycomb group gene, Genetic Markers, family, endosperm development, Arabidopsis, MADS Domain Proteins, genome-wide identification, Plant Genetics, Genes, Plant, Gene Expression Regulation, Plant, RNA, Messenger, Cell Nucleus, Ovule, Arabidopsis Proteins, Reverse Transcriptase Polymerase Chain Reaction, transformation, Gene Expression Profiling, central cell, Endosperm, fertilization, Fertilization, Seeds, egg cell, protein, divergence
polycomb group gene, Genetic Markers, family, endosperm development, Arabidopsis, MADS Domain Proteins, genome-wide identification, Plant Genetics, Genes, Plant, Gene Expression Regulation, Plant, RNA, Messenger, Cell Nucleus, Ovule, Arabidopsis Proteins, Reverse Transcriptase Polymerase Chain Reaction, transformation, Gene Expression Profiling, central cell, Endosperm, fertilization, Fertilization, Seeds, egg cell, protein, divergence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 100 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
