Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The FASEB Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Development
Article . 2007 . Peer-reviewed
Data sources: Crossref
Development
Article . 2007
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inhibition of Tgfβ signaling by endogenous retinoic acid is essential for primary lung bud induction

Authors: Tushar J. Desai; Felicia Chen; Jining Lu; Jun Qian; Karen Niederreither; Wellington V. Cardoso;

Inhibition of Tgfβ signaling by endogenous retinoic acid is essential for primary lung bud induction

Abstract

Disruption of retinoic acid (RA) signaling during early development results in severe respiratory tract abnormalities, including lung agenesis. Previous studies suggest that this might result from failure to selectively induce fibroblast growth factor 10 (Fgf10) in the prospective lung region of the foregut. Little is known about the RA-dependent pathways present in the foregut that may be crucial for lung formation. By performing global gene expression analysis of RA-deficient foreguts from a genetic [retinaldehyde dehydrogenase 2 (Raldh2)-null] and a pharmacological (BMS493-treated)mouse model, we found upregulation of a large number of Tgfβ targets. Increased Smad2 phosphorylation further suggested that Tgfβ signaling was hyperactive in these foreguts when lung agenesis was observed. RA rescue of the lung phenotype was associated with low levels of Smad2 phosphorylation and downregulation of Tgfβ targets in Raldh2-null foreguts. Interestingly, the lung defect that resulted from RA-deficiency could be reproduced in RA-sufficient foreguts by hyperactivating Tgfβ signaling with exogenous TGFβ1. Preventing activation of endogenous Tgfβsignaling with a pan-specific TGFβ-blocking antibody allowed bud formation and gene expression in the lung field of both Raldh2-null and BMS493-treated foreguts. Our data support a novel mechanism of RA-Tgfβ-Fgf10 interactions in the developing foregut, in which endogenous RA controls Tgfβ activity in the prospective lung field to allow local expression of Fgf10 and induction of lung buds.

Related Organizations
Keywords

Extracellular Matrix Proteins, Receptors, Retinoic Acid, Connective Tissue Growth Factor, Embryonic Development, Gene Expression Regulation, Developmental, Tretinoin, Models, Biological, Collagen Type I, Immediate-Early Proteins, Mesoderm, Transforming Growth Factor beta1, Mice, Transforming Growth Factor beta, Animals, Intercellular Signaling Peptides and Proteins, Collagen, Growth Substances, Fibroblast Growth Factor 10, Lung, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    147
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
147
Top 10%
Top 10%
Top 10%
bronze