Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cytogenetic and Geno...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Novel and diverse functions of the DNA mismatch repair family in mammalian meiosis and recombination

Authors: N K, Kolas; P E, Cohen;

Novel and diverse functions of the DNA mismatch repair family in mammalian meiosis and recombination

Abstract

The mismatch repair (MMR) family is a highly conserved group of proteins that function in genome stabilization and mutation avoidance. Their role has been particularly well studied in the context of DNA repair following replication errors, and disruption of these processes results in characteristic microsatellite instability, repair defects and, in mammals, susceptibility to cancer. An additional role in meiotic recombination has been described for several family members, as revealed by extensive studies in yeast. More recently, the role of the mammalian MMR family in meiotic progression has been elucidated by the phenotypic analysis of mice harboring targeted mutations in the genes encoding several MMR family members. This review will discuss the phenotypes of the various mutant mouse lines and, drawing from our knowledge of MMR function in yeast meiosis and in somatic cell repair, will attempt to elucidate the significance of MMR activity in mouse germ cells. These studies highlight the importance of comparative analysis of MMR orthologs across species, and also underscore distinct sexually dimorphic characteristics of mammalian recombination and meiosis.

Related Organizations
Keywords

Recombination, Genetic, Meiosis, DNA Repair, Base Pair Mismatch, Animals, Humans, Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!