
Several methods have been designed to infer species trees from gene trees while taking into account gene tree/species tree discordance. Although some of these methods provide consistent species tree topology estimates under a standard model, most either do not estimate branch lengths or are computationally slow. An exception, the GLASS method of Mossel and Roch, is consistent for the species tree topology, estimates branch lengths, and is computationally fast. However, GLASS systematically overestimates divergence times, leading to biased estimates of species tree branch lengths. By assuming a multispecies coalescent model in which multiple lineages are sampled from each of two taxa at L independent loci, we derive the distribution of the waiting time until the first interspecific coalescence occurs between the two taxa, considering all loci and measuring from the divergence time. We then use the mean of this distribution to derive a correction to the GLASS estimator of pairwise divergence times. We show that our improved estimator, which we call iGLASS, consistently estimates the divergence time between a pair of taxa as the number of loci approaches infinity, and that it is an unbiased estimator of divergence times when one lineage is sampled per taxon. We also show that many commonly used clustering methods can be combined with the iGLASS estimator of pairwise divergence times to produce a consistent estimator of the species tree topology. Through simulations, we show that iGLASS can greatly reduce the bias and mean squared error in obtaining estimates of divergence times in a species tree.
Genotype, Models, Genetic, Species Specificity, Genetic Loci, Genetic Speciation, Cluster Analysis, Computer Simulation, Classification, Algorithms
Genotype, Models, Genetic, Species Specificity, Genetic Loci, Genetic Speciation, Cluster Analysis, Computer Simulation, Classification, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
