Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Weather Revi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Weather Review
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tropical Cyclone Mekkhala’s (2008) Formation over the South China Sea: Mesoscale, Synoptic-Scale, and Large-Scale Contributions

Authors: Lee, Myong-In; Park, Myung-Sook; Kim, Hyeong-Seog; Ho, Chang-Hoi; Elsberry, Russell L.;

Tropical Cyclone Mekkhala’s (2008) Formation over the South China Sea: Mesoscale, Synoptic-Scale, and Large-Scale Contributions

Abstract

Abstract Tropical cyclone formation close to the coastline of the Asian continent presents a significant threat to heavily populated coastal countries. A case study of Tropical Storm Mekkhala (2008) that developed off the coast of Vietnam is presented using the high-resolution analyses of the European Centre for Medium-Range Weather Forecasts/Year of Tropical Convection and multiple satellite observations. The authors have analyzed contributions to the formation from large-scale intraseasonal variability, synoptic perturbations, and mesoscale convective systems (MCSs). Within a large-scale westerly wind burst (WWB) associated with the Madden–Julian oscillation (MJO), synoptic perturbations generated by two preceding tropical cyclones initiated the pre-Mekkhala low-level vortex over the Philippine Sea. Typhoon Hagupit produced a synoptic-scale wave train that contributed to the development of Jangmi, but likely suppressed the Mekkhala formation. The low-level vortex of the pre-Mekkhala disturbance was then initiated in a confluent zone between northeasterlies in advance of Typhoon Jangmi and the WWB. A key contribution to the development of Mekkhala was from diurnally varying MCSs that were invigorated in the WWB. The oceanic MCSs, which typically develop off the west coast of the Philippines in the morning and dissipate in the afternoon, were prolonged beyond the regular diurnal cycle. A combination with the MCSs developing downstream of the Philippines led to the critical structure change of the oceanic convective cluster, which implies the critical role of mesoscale processes. Therefore, the diurnally varying mesoscale convective processes over both the ocean and land are shown to have an essential role in the formation of Mekkhala in conjunction with large-scale MJO and the synoptic-scale TC influences.

Country
Korea (Republic of)
Keywords

551

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%
Green
bronze