Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genomic dissection of the cell-type-specification circuit in Saccharomyces cerevisiae

Authors: Ann Cassidy-Stone; Ann Cassidy-Stone; Sean M. O'Rourke; Sean M. O'Rourke; Ira Herskowitz; Manuel Llinás; David J. Galgoczy; +2 Authors

Genomic dissection of the cell-type-specification circuit in Saccharomyces cerevisiae

Abstract

The budding yeast Saccharomyces cerevisiae has three cell types (a cells, α cells, and a/α cells), each of which is specified by a unique combination of transcriptional regulators. This transcriptional circuit has served as an important model for understanding basic features of the combinatorial control of transcription and the specification of cell type. Here, using genome-wide chromatin immunoprecipitation, transcriptional profiling, and phylogenetic comparisons, we describe the complete cell-type-specification circuit for S . cerevisiae . We believe this work represents a complete description of cell-type specification in a eukaryote.

Keywords

Chromatin Immunoprecipitation, Osmosis, Binding Sites, Models, Genetic, Transcription, Genetic, Genes, Fungal, Saccharomyces cerevisiae, Sodium Chloride, Evolution, Molecular, Open Reading Frames, Gene Expression Regulation, Fungal, Genome, Fungal, Phylogeny, Oligonucleotide Array Sequence Analysis, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 10%
Top 10%
Top 10%
bronze