
Predicated execution is an effective technique for dealing with conditional branches in application programs. However, there are several problems associated with conventional compiler support for predicated execution. First, all paths of control are combined into a single path regardless of their execution frequency and size with conventional if-conversion techniques. Second, speculative execution is difficult to combine with predicated execution. In this paper, we propose the use of a new structure, referred to as the hyperblock, to overcome these problems. The hyperblock is an efficient structure to utilize predicated execution for both compiletime optimization and scheduling. Preliminary experimental results show that the hyperblock is highly effective for a wide range of superscalar and VLIW processors.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 297 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
