
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 19533476
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by life-threatening ventricular arrhythmias and fibrofatty replacement of the cardiac tissue. Desmosomes are prominent cell-cell junctions found in a variety of tissues that resist mechanical stress, including the heart, and recruit the intermediate filament cytoskeleton to sites of cell-cell contact. Mutations in several desmosomal components including plakophilin-2 have been identified in ARVC patients; however, the molecular interactions disrupted by plakophilin-2 mutations are currently unknown. To understand the pathological basis of ARVC, the authors analyzed desmosome assembly and stability in epithelial cell lines expressing mutants of plakophilin-2 found in ARVC patients. Mutant plakophilin-2 proteins were unable to disrupt established desmosomes when expressed in an E-cadherin-expressing epithelial cell model; however, they were unable to initiate de novo assembly of desmosomes in an N-cadherin-expressing epithelial cell model. These studies expand our understanding of desmosome assembly and dynamics.
Recombinant Fusion Proteins, Molecular Sequence Data, Epithelial Cells, Desmosomes, Protein Structure, Tertiary, Amino Acid Substitution, Desmoplakins, Cell Line, Tumor, Mutagenesis, Site-Directed, Humans, Amino Acid Sequence, Plakophilins, Arrhythmogenic Right Ventricular Dysplasia, Sequence Deletion
Recombinant Fusion Proteins, Molecular Sequence Data, Epithelial Cells, Desmosomes, Protein Structure, Tertiary, Amino Acid Substitution, Desmoplakins, Cell Line, Tumor, Mutagenesis, Site-Directed, Humans, Amino Acid Sequence, Plakophilins, Arrhythmogenic Right Ventricular Dysplasia, Sequence Deletion
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
