
arXiv: 2207.09059
Few-shot open-set recognition aims to classify both seen and novel images given only limited training data of seen classes. The challenge of this task is that the model is required not only to learn a discriminative classifier to classify the pre-defined classes with few training data but also to reject inputs from unseen classes that never appear at training time. In this paper, we propose to solve the problem from two novel aspects. First, instead of learning the decision boundaries between seen classes, as is done in standard close-set classification, we reserve space for unseen classes, such that images located in these areas are recognized as the unseen classes. Second, to effectively learn such decision boundaries, we propose to utilize the background features from seen classes. As these background regions do not significantly contribute to the decision of close-set classification, it is natural to use them as the pseudo unseen classes for classifier learning. Our extensive experiments show that our proposed method not only outperforms multiple baselines but also sets new state-of-the-art results on three popular benchmarks, namely tieredImageNet, miniImageNet, and Caltech-USCD Birds-200-2011 (CUB).
Accpeted to ACM MM 2022
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
