Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cognitive Computatio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cognitive Computation
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Image Fusion by Hierarchical Joint Sparse Representation

Authors: Yao Yao 0005; Ping Guo 0002; Xin Xin 0001; Ziheng Jiang;

Image Fusion by Hierarchical Joint Sparse Representation

Abstract

Joint sparse representation (JSR) based image fusion, as one of competitive sparse representation based fusion methods, has been widely studied recently. In this kind of methods, image features are represented as sparse coefficients. They are typically calculated with two decomposition algorithms, namely orthogonal matching pursuit and basis pursuit. In both of them, an error tolerance parameter is specified to control the fineness of a fused image. Intuitively, the more detailed an image fineness is, the more micro-information is presented; the more rough it is, the more macro-information is summarized. Therefore, it is reasonable to assume that complementary information exists among the images generated by different error tolerance parameters. Motivated by this, in this paper, we have tried to combine the features in these images and verify the above assumption. Specifically, we have proposed a two-layer hierarchical framework based on JSR. Extensive experiments demonstrate that effectively combining features in images of different fineness does improve the quality of the fused image significantly. The proposed framework outperforms previous methods according to many objective evaluation criteria.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!