
AbstractWe report the identification of bang senseless (bss), a Drosophila melanogaster mutant exhibiting seizure-like behaviors, as an allele of the paralytic (para) voltage-gated Na+ (NaV) channel gene. Mutants are more prone to seizure episodes than normal flies because of a lowered seizure threshold. The bss phenotypes are due to a missense mutation in a segment previously implicated in inactivation, termed the “paddle motif” of the NaV fourth homology domain. Heterologous expression of cDNAs containing the bss1 lesion, followed by electrophysiology, shows that mutant channels display altered voltage dependence of inactivation compared to wild type. The phenotypes of bss are the most severe of the bang-sensitive mutants in Drosophila and can be ameliorated, but not suppressed, by treatment with anti-epileptic drugs. As such, bss-associated seizures resemble those of pharmacologically resistant epilepsies caused by mutation of the human NaV SCN1A, such as severe myoclonic epilepsy in infants or intractable childhood epilepsy with generalized tonic-clonic seizures.
Epilepsy, Genotype, Molecular Sequence Data, Mutation, Missense, Sodium Channels, Electrophysiological Phenomena, Disease Models, Animal, Phenotype, Gene Expression Regulation, Seizures, Animals, Drosophila, Amino Acid Sequence, Sequence Alignment
Epilepsy, Genotype, Molecular Sequence Data, Mutation, Missense, Sodium Channels, Electrophysiological Phenomena, Disease Models, Animal, Phenotype, Gene Expression Regulation, Seizures, Animals, Drosophila, Amino Acid Sequence, Sequence Alignment
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 107 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
