
Although it is well known that all basic private-key cryptographic primitives can be built from one-way functions, finding weak assumptions from which practical implementations of such primitives exist remains a challenging task. Towards this goal, this paper introduces the notion of a constant-query weak PRF , a function with a secret key which is computationally indistinguishable from a truly random function when evaluated at a constant number s of known random inputs, where s can be as small as two. We provide iterated constructions of (arbitrary-input-length) PRFs from constant-query weak PRFs that even improve the efficiency of previous constructions based on the stronger assumption of a weak PRF (where polynomially many evaluations are allowed). One of our constructions directly provides a new mode of operation using a constant-query weak PRF for IND-CPA symmetric encryption which is essentially as efficient as conventional PRF-based counter-mode encryption. Furthermore, our constructions yield efficient modes of operation for keying hash functions (such as MD5 and SHA-1) to obtain iterated PRFs (and hence MACs) which rely solely on the assumption that the underlying compression function is a constant-query weak PRF, which is the weakest assumption ever considered in this context.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
