Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Part of book or chapter of book . 2012
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2012 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genetical Genomics for Evolutionary Studies

Authors: Prins, J.C.P.; Smant, G.; Jansen, R.C.;

Genetical Genomics for Evolutionary Studies

Abstract

Genetical genomics combines acquired high-throughput genomic data with genetic analysis. In this chapter, we discuss the application of genetical genomics for evolutionary studies, where new high-throughput molecular technologies are combined with mapping quantitative trait loci (QTL) on the genome in segregating populations.The recent explosion of high-throughput data--measuring thousands of proteins and metabolites, deep sequencing, chromatin, and methyl-DNA immunoprecipitation--allows the study of the genetic variation underlying quantitative phenotypes, together termed xQTL. At the same time, mining information is not getting easier. To deal with the sheer amount of information, powerful statistical tools are needed to analyze multidimensional relationships. In the context of evolutionary computational biology, a well-designed experiment may help dissect a complex evolutionary trait using proven statistical methods for associating phenotypical variation with genomic locations.Evolutionary expression QTL (eQTL) studies of the last years focus on gene expression adaptations, mapping the gene expression landscape, and, tentatively, eQTL networks. Here, we discuss the possibility of introducing an evolutionary prior, in the form of gene families displaying evidence of positive selection, and using that in the context of an eQTL experiment for elucidating host-pathogen protein-protein interactions. Through the example of an experimental design, we discuss the choice of xQTL platform, analysis methods, and scope of results. The resulting eQTL can be matched, resulting in putative interacting genes and their regulators. In addition, a prior may help distinguish QTL causality from reactivity, or independence of traits, by creating QTL networks.

Country
Netherlands
Related Organizations
Keywords

Evolution, QTL, Quantitative Trait Loci, Genomics, R/qtl, R-genes, eQTL, Network inference, Evolution, Molecular, xQTL, NGS, Genetical genomics, Metabolomics, Animals, Humans, Selection, Genetic

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!