
pmid: 12910389
Hydrostatic pressure is one of the physical factors affecting cellular physiology. Hydrostatic pressure of a few hundred MPa decreases the viability of yeast cells, and pressure of a few tens MPa decreases the growth rate. To understand the effect of hydrostatic pressure, we employed yeast DNA microarrays and analyzed genome-wide gene-expression levels after the pressure treatment with 180 MPa (immediate) at 4 degrees C and recovery incubation for 1 h and 40 MPa (16 h) at 4 degrees C and recovery incubation for 1 h. The transcription of genes involved in energy metabolism, cell defense, and protein metabolism was significantly induced by the pressure treatment. Genome-wide expression profiles suggested that high pressure caused damage to cellular organelles, since the induced gene products were localized in the membrane structure and/or cellular organelles. Hierarchical clustering analysis suggested that the damage caused by the pressure was similar to that caused by detergents, oils, and freezing/thawing. We also estimated the contribution of induced genes to barotolerance using some strains that have the deletion in the corresponding genes.
Saccharomyces cerevisiae Proteins, Gene Expression Profiling, Gene Expression Regulation, Fungal, Hydrostatic Pressure, Animals, Cluster Analysis, Saccharomyces cerevisiae, Genome, Fungal, Oligonucleotide Array Sequence Analysis
Saccharomyces cerevisiae Proteins, Gene Expression Profiling, Gene Expression Regulation, Fungal, Hydrostatic Pressure, Animals, Cluster Analysis, Saccharomyces cerevisiae, Genome, Fungal, Oligonucleotide Array Sequence Analysis
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
