
pmid: 27516277
Chitosan based hydrogels are a class of cross-linked materials intensely studied for their biomedical, industrial and environmental application, but their biomedical use is limited because of the toxicity of different organic crosslinkers. To overcome this disadvantage, a new strategy to produce supramolecular chitosan hydrogels using low molecular weight compounds able to form covalent linkages and H-bonds to give a dual crosslinking is proposed. For this purpose we used 2-formylphenylboronic acid, which brings the advantage of imine stabilization via iminoboronate formation and potential antifungal activity due to the presence of boric acid residue. FTIR and NMR spectroscopy indicated that the gelling process took place by chemo-physical crosslinking forming a dual iminoboronate-chitosan network. Further, X-ray diffraction demonstrated a three-dimensional nanostructuring of the iminoboronate network with consequences on the micrometer-scale morphology and on the improvement of mechanical properties, as demonstrated by SEM and rheological investigation. The hydrogels proved strong antifungal activity against Candida planktonic yeasts and biofilms, promising to be a friendly treatment of the recurrent vulvovaginitis infections.
Chitosan, Antifungal Agents, Hydrogels, Microbial Sensitivity Tests, Plankton, Cross-Linking Reagents, X-Ray Diffraction, Biofilms, [CHIM] Chemical Sciences, Spectroscopy, Fourier Transform Infrared, Imines, Candida
Chitosan, Antifungal Agents, Hydrogels, Microbial Sensitivity Tests, Plankton, Cross-Linking Reagents, X-Ray Diffraction, Biofilms, [CHIM] Chemical Sciences, Spectroscopy, Fourier Transform Infrared, Imines, Candida
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 77 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
