
AbstractVirtual (computational) high-throughput screening provides a strategy for prioritizing compounds for experimental screens, but the choice of virtual screening algorithm depends on the dataset and evaluation strategy. We consider a wide range of ligand-based machine learning and docking-based approaches for virtual screening on two protein-protein interactions, PriA-SSB and RMI-FANCM, and present a strategy for choosing which algorithm is best for prospective compound prioritization. Our workflow identifies a random forest as the best algorithm for these targets over more sophisticated neural network-based models. The top 250 predictions from our selected random forest recover 37 of the 54 active compounds from a library of 22,434 new molecules assayed on PriA-SSB. We show that virtual screening methods that perform well in public datasets and synthetic benchmarks, like multi-task neural networks, may not always translate to prospective screening performance on a specific assay of interest.
Machine Learning, Molecular Docking Simulation, User-Computer Interface, Protein Conformation, Drug Evaluation, Preclinical, Proteins, Algorithms
Machine Learning, Molecular Docking Simulation, User-Computer Interface, Protein Conformation, Drug Evaluation, Preclinical, Proteins, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
