
pmid: 28599185
Optimal (flexible) descriptors were used to establish quantitative structure - activity relationships (QSAR) for toxicity of pesticides (n=116) towards rainbow trout. A heterogeneous set of hundreds of pesticides has been used, taken from the EFSA's chemical Hazards Database: OpenFoodTox. Optimal descriptors are preparing from simplified molecular input-line entry system (SMILES). So-called, correlation weights of different fragments of SMILES are calculating by the Monte Carlo optimization procedure where correlation coefficient between endpoint and optimal descriptor plays role of the target function. Having maximum of the correlation coefficient for the training set, one can suggest that the optimal descriptor calculated with these correlation weights can correlate with endpoint for external validation set. This approach was checked up with three different distributions into the training (≈85%) set and external validation (≈15%) set. The statistical characteristics of these models are (i) for training set correlation coefficient (r2) ranges 0.72-0.81, and root mean squared error (RMSE) ranges 0.54-1.25; (ii) for external (validation) set r2 ranges 0.74-0.84; and RMSE ranges 0.64-0.75. Computational experiments have shown that presence of chlorine, fluorine, sulfur, and aromatic fragments is promoter of increase for the toxicity.
No-Observed-Adverse-Effect Level, Databases, Factual, Quantitative Structure-Activity Relationship, Models, Theoretical, Lethal Dose 50, Oncorhynchus mykiss, Animals, Pesticides, Monte Carlo Method, Software, Water Pollutants, Chemical
No-Observed-Adverse-Effect Level, Databases, Factual, Quantitative Structure-Activity Relationship, Models, Theoretical, Lethal Dose 50, Oncorhynchus mykiss, Animals, Pesticides, Monte Carlo Method, Software, Water Pollutants, Chemical
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
