Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/icpc58...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automating Method Naming with Context-Aware Prompt-Tuning

Authors: Jie Zhu; Lingwei Li; Li Yang 0015; Xiaoxiao Ma 0005; Chun Zuo;

Automating Method Naming with Context-Aware Prompt-Tuning

Abstract

Method names are crucial to program comprehension and maintenance. Recently, many approaches have been proposed to automatically recommend method names and detect inconsistent names. Despite promising, their results are still sub-optimal considering the three following drawbacks: 1) These models are mostly trained from scratch, learning two different objectives simultaneously. The misalignment between two objectives will negatively affect training efficiency and model performance. 2) The enclosing class context is not fully exploited, making it difficult to learn the abstract function of the method. 3) Current method name consistency checking methods follow a generate-then-compare process, which restricts the accuracy as they highly rely on the quality of generated names and face difficulty measuring the semantic consistency. In this paper, we propose an approach named AUMENA to AUtomate MEthod NAming tasks with context-aware prompt-tuning. Unlike existing deep learning based approaches, our model first learns the contextualized representation(i.e., class attributes) of PL and NL through the pre-training model, then fully exploits the capacity and knowledge of large language model with prompt-tuning to precisely detect inconsistent method names and recommend more accurate names. To better identify semantically consistent names, we model the method name consistency checking task as a two-class classification problem, avoiding the limitation of previous similarity-based consistency checking approaches. The experimental results reflect that AUMENA scores 68.6%, 72.0%, 73.6%, 84.7% on four datasets of method name recommendation, surpassing the state-of-the-art baseline by 8.5%, 18.4%, 11.0%, 12.0%, respectively. And our approach scores 80.8% accuracy on method name consistency checking, reaching an 5.5% outperformance. All data and trained models are publicly available.

Accepted by ICPC-2023

Related Organizations
Keywords

Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green