
This chapter presents some recent advances in surrogate-assisted evolutionary optimization of large problems. By large problems, we mean either the number of decision variables is large, or the number of objectives is large, or both. These problems pose challenges to evolutionary algorithms themselves, constructing surrogates and surrogate management. To address these challenges, we proposed two algorithms, one called kriging-assisted reference vector guided evolutionary algorithm (K-RVEA) for many-objective optimization, and the other called cooperative swarm optimization algorithm (SA-COSO) for high-dimensional single-objective optimization. Empirical studies demonstrate that K-RVEA works well for many-objective problems having up to ten objectives, while SA-COSA outperforms the state-of-the-art algorithms on 200-dimensional single-objective test problems.
mathematical optimisation, optimointi, optimisation, evolutionary computation, Mathematical Information Technology, evoluutiolaskenta, matemaattinen optimointi, Tietotekniikka
mathematical optimisation, optimointi, optimisation, evolutionary computation, Mathematical Information Technology, evoluutiolaskenta, matemaattinen optimointi, Tietotekniikka
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
