Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical and Biop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Physical dissection of the CCAAT/enhancer-binding protein α in regulating the mouse amelogenin gene

Authors: Ormond A. MacDougald; Robin L. Erickson; Malcolm L. Snead; Yucheng Xu; Yan Larry Zhou;

Physical dissection of the CCAAT/enhancer-binding protein α in regulating the mouse amelogenin gene

Abstract

The amelogenin gene is tightly regulated at the temporal and spatial level in accord with the developmental requirement for tooth formation. Previous studies have shown that CCAAT/enhancer-binding protein alpha (C/EBPalpha) is a transactivator of the mouse X-chromosomal amelogenin gene. C/EBPalpha contains four highly conserved regions (CR) named CR1, CR2, CR3, and CR4. Transient transfection assays showed that CR2 in isolation had an exceptional capacity to enhance transcription from the 2.3 kb mouse amelogenin promoter. The remaining conserved regions of C/EBPalpha, either in isolation or in selected combinations, were less effective in amelogenin transactivation than the full length C/EBPalpha. Msx2 has previously been shown to antagonize C/EBPalpha through protein-protein interactions with C/EBPalpha, and the carboxyl-terminus of Msx2 is required for protein-protein interactions. Co-immunoprecipitation analyses identified that the carboxyl-terminal domain (residues 218-359) of C/EBPalpha is required for the C/EBPalpha-Msx2 protein-protein interactions.

Keywords

Transcriptional Activation, Mice, Structure-Activity Relationship, Amelogenin, Gene Expression Regulation, Ameloblasts, CCAAT-Enhancer-Binding Protein-alpha, Animals, Promoter Regions, Genetic, Cell Line

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Top 10%
bronze