Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DSpace@MIT (Massachu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2016
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DSpace@MIT
Article . 2016
License: CC BY NC
Data sources: DSpace@MIT
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of Low Endothelial Shear Stress After Stent Implantation on Subsequent Neointimal Hyperplasia and Clinical Outcomes in Humans

Authors: Shishido, Koki; Antoniadis, Antonios P.; Takahashi, Saeko; Tsuda, Masaya; Mizuno, Shingo; Andreou, Ioannis; Papafaklis, Michail I.; +6 Authors

Effects of Low Endothelial Shear Stress After Stent Implantation on Subsequent Neointimal Hyperplasia and Clinical Outcomes in Humans

Abstract

Background In‐stent hyperplasia ( ISH ) may develop in regions of low endothelial shear stress ( ESS ), but the relationship between the magnitude of low ESS , the extent of ISH, and subsequent clinical events has not been investigated. Methods and Results We assessed the association of poststent ESS with neointimal ISH and clinical outcomes in patients treated with percutaneous coronary interventions ( PCI ). Three‐dimensional coronary reconstruction was performed in 374 post‐ PCI patients at baseline and 6 to 10 months follow‐up as part of the PREDICTION Study. Each vessel was divided into 1.5‐mm‐long segments, and we calculated the local ESS within each stented segment at baseline. At follow‐up, we assessed ISH and the occurrence of a clinically indicated repeat PCI for in‐stent restenosis. In 246 total stents (54 overlapping), 100 (40.7%) were bare‐metal stents ( BMS ), 104 (42.3%) sirolimus‐eluting stents, and 42 (17.1%) paclitaxel‐eluting stents. In BMS , low ESS post‐ PCI at baseline was independently associated with ISH (β=1.47 mm 2 per 1‐Pa decrease; 95% CI , 0.38–2.56; P <0.01). ISH was minimal in drug‐eluting stents. During follow‐up, repeat PCI in BMS was performed in 21 stents (8.5%). There was no significant association between post‐ PCI ESS and in‐stent restenosis requiring PCI . Conclusions Low ESS after BMS implantation is associated with subsequent ISH . ISH is strongly inhibited by drug‐eluting stents. Post‐ PCI ESS is not associated with in‐stent restenosis requiring repeat PCI . ESS is an important determinant of ISH in BMS , but ISH of large magnitude to require PCI for in‐stent restenosis is likely attributed to factors other than ESS within the stent.

Country
United States
Keywords

Male, 610, neointimal hyperplasia, in‐stent restenosis, shear stress, Coronary Restenosis, Percutaneous Coronary Intervention, Vascular Biology, Neointima, Diseases of the circulatory (Cardiovascular) system, Humans, Original Research, Aged, Sirolimus, Hyperplasia, percutaneous coronary intervention, Hemodynamics, imaging, Drug-Eluting Stents, Middle Aged, Early Diagnosis, Treatment Outcome, RC666-701, Female, Stents, Stress, Mechanical, Immunosuppressive Agents, Follow-Up Studies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Green
gold