Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Presentation . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Presentation . 2021
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accretion and outflow activity in proto-brown dwarfs

Authors: Riaz, Basmah; Bally, John;

Accretion and outflow activity in proto-brown dwarfs

Abstract

Mass accretion and ejection are the fundamental processes during the early stages of star formation. We have conducted the first extensive study of the accretion and outflow properties in Class 0/I proto-brown dwarfs (proto-BDs) using VLT SINFONI spectroscopy and spectro-imaging observations. The near-infrared spectra for the proto-BDs show prominent emission in the Paschen β, Brackett γ, Brackett 10–19, and several [FeII] and H2 lines. The detection of H2 lines from vibrational energy levels of ν = 1 to ν = 6 indicates the presence of both a cold (E(v,J) < 6000 K) and a hot gas component (E(v,J) > 20,000 K). The Class 0 proto-BDs show strong emission in the H2 lines but the [Fe II] lines are undetected, while the Class I objects show emission in both [Fe II] and H2 lines, suggesting an evolutionary trend in the jets from a molecular to an ionic composition. Extended emission with knots is seen in the [Fe II] and H2 spectro-images for 3 proto-BDs, while the rest show compact morphologies with a peak on-source. The peak velocities of the [Fe II] lines (≥100 km/s) are higher than the H2 lines (∼10-50 km/s), indicating that these lines trace different flow components. The accretion and outflow activity rates for the proto-BDs are in the range of (2×10−6 - 5×10−9) M⊙/yr. The outflow rate derived using the [Fe II] lines is at least an order of magnitude higher than H2 lines, indicating that [Fe II] traces a large fraction of the total outflow mass. A comparison with Class 0/I protostars indicates that there is no notable decline in the accretion and outflow activity or jet efficiencies over a wide range in bolometric luminosities from ~30 L⊙ down to ~0.03 L⊙.

{"references": ["Riaz & Bally, 2021, MNRAS, 501, 3781"]}

Keywords

Very low mass stars

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Top 10%
Average