Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flow Measurement and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Flow Measurement and Instrumentation
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Flow regime identification of steam-water two-phase flow using optical probes, based on local parameters in vertical tube bundles

Authors: Miao Gui; Teng Wang; Qincheng Bi; Zhaohui Liu; Zhiqiang Sui;

Flow regime identification of steam-water two-phase flow using optical probes, based on local parameters in vertical tube bundles

Abstract

Abstract Flow regime identification based on local parameters of axial upward two-phase flow in vertical tube bundles, at high-temperature and high-pressure, was performed using optical probes. A staggered arrangement of the tube bundles was simulated inside a non-circular test channel, the tube size and pitch are same as that in a real steam generator of a PWR under design. Optical probes were utilized to acquire the void fraction, interface frequency, and fluctuation characteristics of the local void fraction at two typical locations (centroid of the three tubes, named op-1, and centre of the minimum gap between two tubes, named op-2). The system pressure ranged from 5 to 9 MPa, mass flux from 100 to 350 kg m−2 s−1, thermodynamic steam quality from 0 to 1, and inlet fluid temperature from 263.9 to 303.3 °C, depending on the saturation pressure. This study investigated local parameters and flow pattern characteristics of high-pressure steam-water two-phase flow in vertical tube bundles using optical probes, with the measurement error of less than 2%. Results showed that local void fraction at op-1 was much larger than that at op-2, and the local void fraction difference between op-1 and op-2 increased first and then gradually decreased, which was primarily affected by the transition in flow regimes. The flow pattern characteristics of steam-water two-phase flow were described based on three aspects, namely, variation in interface frequency with local void fraction, fluctuation characteristics of local void fraction, and statistical analysis of local void fraction deviating from the average. Additionally, the flow regime identification criteria, applicable to the steam-water two-phase flow in vertical tube bundles, were proposed based on local parameters.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!