
doi: 10.1038/nrg952
pmid: 12459723
Stem cells are characterized by their ability to self-renew and to produce numerous differentiated cell types, and are directly responsible for generating and maintaining tissues and organs. This property has long been attributed to the instructive signals that stem cells receive from their microenvironment - the so-called 'stem-cell niche'. Studies of stem cells in the Drosophila gonad have yielded much exciting insight into the structure of the niche and the signalling pathways that it produces to regulate the self-renewal of stem cells. These findings are illuminating our understanding of the self-renewing mechanisms of tissue stem cells in general.
Male, Stem Cells, Ovary, Testis, Animals, Cell Differentiation, Drosophila, Female, Signal Transduction
Male, Stem Cells, Ovary, Testis, Animals, Cell Differentiation, Drosophila, Female, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 318 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
