Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuroinformaticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroinformatics
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

iBEAT: A Toolbox for Infant Brain Magnetic Resonance Image Processing

Authors: Li Wang; Guorong Wu; Yakang Dai; Feng Shi; Dinggang Shen;

iBEAT: A Toolbox for Infant Brain Magnetic Resonance Image Processing

Abstract

It's a great challenge to analyze infant brain MR images due to the small brain size and low contrast of the developing brain tissues. We have developed an Infant Brain Extraction and Analysis Toolbox (iBEAT) for various processing of magnetic resonance (MR) images of infant brains. Several major functions generally used in infant brain analysis are integrated in iBEAT, including image preprocessing, brain extraction, tissue segmentation, and brain labeling. The functions of brain extraction, tissue segmentation, and brain labeling are provided respectively by three state-of-the-art algorithms. First, a learning-based meta-algorithm which integrates a group of brain extraction results generated by the two existing brain extraction algorithms (BET and BSE) was implemented in iBEAT for extraction of infant brains from MR images. Second, a level-sets-based tissue segmentation algorithm that utilizes multimodality information, cortical thickness constraint, and longitudinal consistency constraint was also included in iBEAT for segmentation of infant brain tissues. Third, HAMMER (standing for Hierarchical Attribute Matching Mechanism for Elastic Registration) registration algorithm was further included in iBEAT to label regions of interest (ROIs) of infant brain images by warping the pre-labeled ROIs of a template to the infant brain image space. By integration of these state-of-the-art methods, iBEAT is able to segment and label infant brain MR images accurately. Moreover, it can process not only single-time-point images for cross-sectional studies, but also multiple-time-point images of the same infant for longitudinal studies. The performance of iBEAT has been comprehensively evaluated with hundreds of infant brain images. A Linux-based standalone package of iBEAT is freely available at http://www.nitrc.org/projects/ibeat .

Related Organizations
Keywords

Male, Brain Mapping, Age Factors, Infant, Newborn, Brain, Infant, Magnetic Resonance Imaging, Image Processing, Computer-Assisted, Humans, Learning, Female, Algorithms, Software

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!