
The CEN4 sequences from chromosome 4 that impart mitotic stability to autonomously replicating (ARS) plasmids in yeast cells have been localized to a 1,755-base-pair (bp) fragment. This fragment could be cut in half to give two adjacent, nonoverlapping fragments, that each contained some mitotic stabilization sequences. One of the half-fragments worked as efficiently as the larger fragment from which it was derived, while the other half provided a much poorer degree of mitotic stabilization. Sequencing of 2,095 bp of DNA including this region revealed the presence of a centromere consensus sequence, elements I, II, and III (M. Fitzgerald-Hayes, L. Clarke, and J. Carbon, Cell 29:235-244, 1982), in the half-fragment providing high levels of mitotic stability. The poorly stabilizing half-fragment did not contain any obvious sequence homologies to other centromere sequences. Deletion analysis of the 1,755-bp fragment indicated that removal of the 14-bp element I plus 16 of the 82 bp of element II impaired mitotic stability. Removal of elements I and II eliminated the mitotic stability provided by the consensus sequence.
Phenotype, Base Sequence, Centromere, Chromosome Mapping, Amino Acid Sequence, Saccharomyces cerevisiae, DNA, Fungal, Chromosomes
Phenotype, Base Sequence, Centromere, Chromosome Mapping, Amino Acid Sequence, Saccharomyces cerevisiae, DNA, Fungal, Chromosomes
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 63 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
