Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PubMed Centralarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Modeling
Article . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fluorinated derivatives of tetrahydroaltersolanol molecule on COVID-19, HIV, and HTLV protease by DFT and molecular docking approaches

Authors: Azadparvar, Maliheh; Kheirabadi, M.; Aliabad, H. A. Rahnamaye;

Fluorinated derivatives of tetrahydroaltersolanol molecule on COVID-19, HIV, and HTLV protease by DFT and molecular docking approaches

Abstract

Structural, optoelectronic, and biological properties of tetrahydroaltersolanol (C16H20O7) and fluorinated derivatives are calculated using density functional theory (DFT) and molecular docking approaches. It is shown that the pure C16H20O7 molecule has a direct HOMO-LUMO energy gap about 3.1 eV. The substitution of F atom at A category decreases the electronic energy gap, while it is constant at B category. In A category, the behavior of the pure molecule changed from insulator to semiconductor with various substitution of F atom. The electronic properties were depended on the F sites in the pure molecule. The molecular electrical transport properties and charge-transfer possibilities increase with decreasing energy gap. The pure C16H20O7 molecule with high energy gap has low chemical reactivity and substitution of F atom at considered molecule increases chemical reactivity. Obtained results show that F-O bonds in trifurcation bonds of C16H19O7(F14), C16H19O7(F16), and C16H19O7(F17) molecules play a key role in confronting with COVID-19, HIV, and HTLV proteases, respectively. Optical spectra, such as the dielectric functions, electron energy-loss spectroscopy, refractive index, extinction coefficient, and reflection spectra show that fluorinated derivatives of C16H20O7 at B category can be used in the new drugs.

Related Organizations
Keywords

Molecular Docking Simulation, Original Paper, Semiconductors, COVID-19, Humans, HIV Infections, Peptide Hydrolases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green