Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Clinical ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Clinical Neuroscience
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

G-protein coupled receptor kinase (GRK)-5 regulates proliferation of glioblastoma-derived stem cells

Authors: Matthew Z. Sun; Michael Safaee; Ili Tan; Michael E. Sughrue; Joanna J. Phillips; Andrew T. Parsa; Orin Bloch; +4 Authors

G-protein coupled receptor kinase (GRK)-5 regulates proliferation of glioblastoma-derived stem cells

Abstract

Glioblastoma multiforme (GBM) is a grade IV malignant brain tumor with high mortality and has been well known to involve many molecular pathways, including G-protein coupled receptor (GPCR)-mediated signaling (such as epithelial growth factor receptor [EGFR] and platelet derived growth factor receptor [PDGFR]). G protein-coupled receptor kinases (GRK) directly regulate GPCR activity by phosphorylating activated agonist-bound receptors to desensitize signaling and internalize receptors through beta-arrestins. Recent studies in various cancers, including prostate and breast cancer, have highlighted the role of change in GRK expression to oncogenesis and tumor proliferation. In this study, we evaluated the expression of GRK5 in grade II to grade IV glioma specimens using immunohistochemistry and found that GRK5 expression levels are highly correlated with aggressiveness of glioma. We used culture conditions to selectively promote the growth of either glioblastoma cells with stem cell markers (GSC) or differentiated glioblastoma cells (DGC) from fresh GBM specimens. GSC are known to be highly invasive and mobile, and have the capacity to self-renew and are more resistant to chemotherapy and radiation compared to differentiated populations of GBM. We examined the expression of GRK5 in these two sets of culturing conditions for GBM cells and found that GRK5 expression is upregulated in GSC compared to differentiated GBM cells. To better understand the role of GRK5 in GBM-derived stem cells, we created stable GRK5 knockdown and evaluated the proliferation rate. Using an ATP chemiluminescence assay, we show, for the first time, that knocking down the expression of GRK5 decreased the proliferation rate of GSC in contrast to control.

Keywords

G-Protein-Coupled Receptor Kinase 5, Luminescence, Brain Neoplasms, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Mice, Nude, Immunohistochemistry, Mice, Cell Line, Tumor, Gene Knockdown Techniques, Neoplastic Stem Cells, Animals, Heterografts, Humans, Glioblastoma, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?