
Aberrant activation of Cdk5 has been implicated in the process of neurodegenerative diseases such as Alzheimer's disease (AD). We recently reported that S-nitrosylation of Cdk5 (forming SNO-Cdk5) at specific cysteine residues results in excessive activation of Cdk5, contributing to mitochondrial dysfunction, synaptic damage, and neuronal cell death in models of AD. Furthermore, SNO-Cdk5 acts as a nascent S-nitrosylase, transnitrosylating the mitochondrial fission protein Drp1 and enhancing excessive mitochondrial fission in dendritic spines. However, a molecular mechanism that leads to the formation of SNO-Cdk5 in neuronal cells remained obscure. Here, we demonstrate that neuronal nitric oxide synthase (NOS1) interacts with Cdk5 and that the close proximity of the two proteins facilitates the formation of SNO-Cdk5. Interestingly, as a negative feedback mechanism, Cdk5 phosphorylates and suppresses NOS1 activity. Thus, together with our previous report, these findings delineate an S-nitrosylation pathway wherein Cdk5/NOS1 interaction enhances SNO-Cdk5 formation, mediating mitochondrial dysfunction and synaptic loss during the etiology of AD.
Neurons, Amyloid, Cyclin-Dependent Kinase 5, Nitric Oxide Synthase Type I, Rats, Enzyme Activation, HEK293 Cells, Alzheimer Disease, Animals, Humans, Cells, Cultured, Nitroso Compounds
Neurons, Amyloid, Cyclin-Dependent Kinase 5, Nitric Oxide Synthase Type I, Rats, Enzyme Activation, HEK293 Cells, Alzheimer Disease, Animals, Humans, Cells, Cultured, Nitroso Compounds
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
