Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cytochrome c Oxidase Subassemblies in Fibroblast Cultures from Patients Carrying Mutations in COX10, SCO1, or SURF1

Authors: SL Williams; Pierre Rustin; Isabelle Valnot; Jan-Willem Taanman;

Cytochrome c Oxidase Subassemblies in Fibroblast Cultures from Patients Carrying Mutations in COX10, SCO1, or SURF1

Abstract

Cytochrome c oxidase contains two redox-active copper centers (Cu(A) and Cu(B)) and two redox-active heme A moieties. Assembly of the enzyme relies on several assembly factors in addition to the constituent subunits and prosthetic groups. We studied fibroblast cultures from patients carrying mutations in the assembly factors COX10, SCO1, or SURF1. COX10 is involved in heme A biosynthesis. SCO1 is required for formation of the Cu(A) center. The function of SURF1 is unknown. Immunoblot analysis of native gels demonstrated severely decreased levels of holoenzyme in the patient cultures compared with controls. In addition, the blots revealed the presence of five subassemblies: three subassemblies involving the core subunit MTCO1 but apparently no other subunits; a subassembly containing subunits MTCO1, COX4, and COX5A; and a subassembly containing at least subunits MTCO1, MTCO2, MTCO3, COX4, and COX5A. As some of the subassemblies correspond to known assembly intermediates of human cytochrome c oxidase, we think that these subassemblies are probably assembly intermediates that accumulate in patient cells. The MTCO1.COX4.COX5A subassembly was not detected in COX10-deficient cells, which suggests that heme A incorporation into MTCO1 occurs prior to association of MTCO1 with COX4 and COX5A. SCO1-deficient cells contained accumulated levels of the MTCO1.COX4.COX5A subassembly, suggesting that MTCO2 associates with the MTCO1.COX4.COX5A subassembly after the Cu(A) center of MTCO2 is formed. Assembly in SURF1-deficient cells appears to stall at the same stage as in SCO1-deficient cells, pointing to a role for SURF1 in promoting the association of MTCO2 with the MTCO1.COX4.COX5A subassembly.

Related Organizations
Keywords

Alkyl and Aryl Transferases, Membrane Proteins, Cytochrome c Group, Heme, Fibroblasts, Electron Transport Complex IV, Mitochondrial Proteins, Protein Subunits, Mutation, Humans, Electrophoresis, Polyacrylamide Gel, Leigh Disease, Oxidation-Reduction, Cells, Cultured, Copper, Molecular Chaperones

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    118
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
118
Top 10%
Top 10%
Top 1%
gold