Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship@Westernarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Association of the Disordered C-terminus of CDC34 with a Catalytically Bound Ubiquitin

Authors: Spratt, Donald E.; Shaw, Gary S.;

Association of the Disordered C-terminus of CDC34 with a Catalytically Bound Ubiquitin

Abstract

Cell division cycle protein 34 (CDC34) is a key E2 ubiquitin (Ub)-conjugating enzyme responsible for the polyubiquitination of proteins controlling the G1/S stages of cell division. The acidic C-terminus of the enzyme is required for this function, although there is little structural information providing details for a mechanism. One logical time point involving the C-terminus is the CDC34-Ub thiolester complex that precedes Ub transfer to a substrate. To examine this, we used a CDC34-Ub disulfide complex that structurally mimics the thiolester intermediate. NMR spectroscopy was used to show that the CDC34 C-terminus is disordered but can intramolecularly interact with the catalytically bound Ub. Using chemical shift perturbation analysis, we mapped two interacting regions on the surface of Ub in the CDC34-Ub complex. The first site comprises a hydrophobic patch (typical of other Ub complexes) that associates with the CDC34 catalytic domain. A novel second site, dependent on the C-terminus of CDC34, comprises a lysine-rich surface (K6, K11, K29, and K33) on the opposite face of Ub. Further, NMR experiments show that this interaction is described by two slowly exchanging states-a compact conformation where the C-terminus of CDC34 interacts with bound Ub and an extended structure where the C-terminus is released. This work provides the first structural details that show how the C-terminus of CDC34 might direct a thiolester-bound Ub to control polyubiquitin chain formation.

Related Organizations
Keywords

Models, Molecular, 570, Binding Sites, Protein Conformation, Ubiquitin, Lysine, Cell Cycle, Protein interactions, Ubiquitin-Protein Ligase Complexes, 540, Biochemistry, Anaphase-Promoting Complex-Cyclosome, NMR spectroscopy, Catalytic Domain, Ubiquitin-Conjugating Enzymes, E2-conjugating enzyme, Humans, Polyubiquitin

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
Green