
How to rapidly adapt to new tasks and improve model generalization through few-shot learning remains a significant challenge in meta-learning. Model-Agnostic Meta-Learning (MAML) has become a powerful approach, with offers a simple framework with excellent generality. However, the requirement to compute second-order derivatives and retain a lengthy calculation graph poses considerable computational and memory burdens, limiting the practicality of MAML. To address this issue, we propose Evolving MAML (Evo-MAML), an optimization-based meta-learning method that incorporates evolving gradient within the inner loop. Evo-MAML avoids the second-order information, resulting in reduced computational complexity. Experimental results show that Evo-MAML exhibits higher generality and competitive performance when compared to existing first-order approximation approaches, making it suitable for both few-shot learning and meta-reinforcement learning settings.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
