Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DIGITAL.CSIC
Article . 2015 . Peer-reviewed
Data sources: DIGITAL.CSIC
Proceedings of the National Academy of Sciences
Article . 1998 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drosophila NURF-55, a WD repeat protein involved in histone metabolism

Authors: Martínez-Balbás, Marian; Tsukiyama, Toshio; Gdula, David; Wu, Carl;

Drosophila NURF-55, a WD repeat protein involved in histone metabolism

Abstract

The Drosophila nucleosome remodeling factor (NURF) is a protein complex of four distinct subunits that assists transcription factor-mediated chromatin remodeling. One NURF subunit, ISWI, is related to the transcriptional regulators Drosophila brahma and yeast SWI2/SNF2. We have determined peptide sequences and isolated cDNA clones for a second NURF component (the 55-kDa subunit). Immunological studies show that p55 is an integral subunit of NURF and is generally associated with polytene chromosomes. The predicted sequence of p55 reveals a WD repeat protein that is identical with the 55-kDa subunit of the Drosophila chromatin assembly factor (CAF-1). Given that WD repeat proteins related to p55 are associated with histone deacetylase and histone acetyltransferase, our findings suggest that p55 and its homologs may function as a common platform for the assembly of protein complexes involved in chromatin metabolism.

Country
Spain
Keywords

Saccharomyces cerevisiae Proteins, Chromosomal Proteins, Non-Histone, Molecular Sequence Data, Nuclear Proteins, Chromatin, DNA-Binding Proteins, Histones, Chromatin Assembly Factor-1, Acetyltransferases, Animals, Drosophila Proteins, Insect Proteins, Drosophila, Amino Acid Sequence, Retinoblastoma-Binding Protein 4, Fluorescent Antibody Technique, Indirect, Histone Acetyltransferases, Molecular Chaperones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    150
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 23
    download downloads 43
  • 23
    views
    43
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
150
Top 10%
Top 10%
Top 1%
23
43
Green
bronze