Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

dSmurf Selectively Degrades Decapentaplegic-activated MAD, and Its Overexpression Disrupts Imaginal Disc Development

Authors: Liang, YY; Lin, X; Liang, M; Brunicardi, FC; ten Dijke, P; Chen, ZH; Choi, KW Choi, Kwang-Wook; +1 Authors

dSmurf Selectively Degrades Decapentaplegic-activated MAD, and Its Overexpression Disrupts Imaginal Disc Development

Abstract

MAD plays an important role in decapentaplegic (DPP) signaling throughout Drosophila development. Despite a recent study describing the restriction of DPP signaling via putative ubiquitin E3 ligase dSmurf (1), the molecular mechanisms of how dSmurf affects DPP signaling remain unexplored. Toward this goal we demonstrated the degradation of phosphorylated MAD by dSmurf. dSmurf selectively interacted with MAD, but not Medea and Dad, and the MAD-dSmurf interaction was induced by constitutively active DPP type I receptor thickveins. Wild type dSmurf, but not its C1029A mutant, mediated ubiquitination-dependent degradation of MAD. Silencing of dSmurf using RNA interference stabilized MAD protein in Drosophila S2 cells. Targeted expression of dSmurf in various tissues abolished phosphorylated MAD and disrupted patterning and growth. In contrast, similar overexpression of inactive dSmurf(C1029A) showed no significant effects on development. We conclude that dSmurf specifically targets phosphorylated MAD to proteasome-dependent degradation and regulates DPP signaling during development.

Keywords

570, Proteasome Endopeptidase Complex, Ubiquitin, Ubiquitin-Protein Ligases, Gene Expression Regulation, Developmental, Genes, Insect, DNA-Binding Proteins, Ligases, Cysteine Endopeptidases, Multienzyme Complexes, Mutagenesis, Animals, Drosophila Proteins, Wings, Animal, Drosophila, Phosphorylation, Body Patterning, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
gold