Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Neuroscience
Article . 2008
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fetal striatum- and ventral mesencephalon–derived expanded neurospheres rescue dopaminergic neurons in vitro and the nigro-striatal system in vivo

Authors: Ilse Gantois; David Moses; David Moses; John Drago; David Finkelstein; David Finkelstein; Malcolm K. Horne; +1 Authors

Fetal striatum- and ventral mesencephalon–derived expanded neurospheres rescue dopaminergic neurons in vitro and the nigro-striatal system in vivo

Abstract

The pathogenesis of Parkinson's disease (PD) involves ongoing apoptotic loss of dopaminergic neurons in the substantia nigra pars compacta. Local delivery of the trophic factors can rescue dopaminergic neurons and halt the progression of PD. In this study we show that fetal E11 striatum-derived neurospheres and E14.5 ventral mesencephalon (VM) -derived neurospheres (NS E11 and NSvm, respectively) are a source of factors that rescue dopaminergic neurons. First, long-term expanded NS E11 and NSvm rescued primary dopaminergic neurons from serum-deprivation induced apoptosis and promoted survival of dopaminergic neurons for 14 days in vitro and this effect was due to soluble contact-independent factor/s. Second, green fluorescent protein-expressing NS E11 and NSvm grafted into the midbrain of mice with unilateral 6-hydroxydopamine-induced Parkinsonism resulted in partial rescue of the nigro-striatal system and improvement of the hypo-dopaminergic behavioral deficit. Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that intact NS E11 and NSvm expressed fibroblast growth factor-2, brain-derived neurotrophic factor (BDNF), pleiotrophin, neurotrophin-3, but not glial cell line-derived neurotrophic factor (GDNF). GDNF expression was also undetectable in vivo in grafted NS E11 and NSvm suggesting that NS-derived factor/s other than GDNF mediated the rescue of nigral dopaminergic neurons. Identification of NS-derived soluble factor(s) may lead to development of novel neuroprotective therapies for PD. An unexpected observation of the present study was the detection of the ectopic host-derived tyrosine hydroxylase (TH) -expressing cells in sham-grafted mice and NS E11- and NSvm -grafted mice. We speculate that injury-derived signals (such as inflammatory cytokines that are commonly released during transplantation) induce TH expression in susceptible cells.

Keywords

Neurons, Cell Survival, Cell Transplantation, Dopamine, Immunohistochemistry, Coculture Techniques, Culture Media, Serum-Free, Mice, Inbred C57BL, Neostriatum, Amphetamine, Hydroxydopamines, Mice, Mesencephalon, Pregnancy, Culture Media, Conditioned, Animals, RNA, Central Nervous System Stimulants, Female, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!