
The reaction of indium (In) and silver (Ag) during the electroplating process of indium over a thick silver layer was investigated. It was found that the plated In atoms react with Ag to form AgIn2 intermetallic compounds at room temperature. Indium is commonly used in the electronics industry to bond delicate devices due to its low yield strength and low melting temperature. In this study, copper (Cu) substrates were electroplated with a 60-μm-thick Ag layer, followed by electroplating an In layer with a thickness of 5 μm or 10 μm, at room temperature. To investigate the chemical reaction between In and Ag, the microstructure and composition on the surface and the cross section of samples were observed by scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDX). The x-ray diffraction method (XRD) was also employed for phase identification. It was clear that indium atoms reacted with underlying Ag to form AgIn2 during the plating process. After the sample was stored at room temperature in air for 1 day, AgIn2 grew to 5 μm in thickness. With longer storage time, AgIn2 continued to grow until all indium atoms were consumed. The indium layer, thus, disappeared and could barely be detected by XRD.
Material Science, electroplating, AgIn2, Condensed Matter Physics, Characterization and Evaluation of Materials, Indium, Electronics and Microelectronics, Instrumentation, Optical and Electronic Materials, Electronic, Optical and Magnetic Materials, Electronics and Microelectronics, Materials Chemistry, silver, Solid State Physics and Spectroscopy, Electrical and Electronic Engineering, Instrumentation, intermetallic reaction
Material Science, electroplating, AgIn2, Condensed Matter Physics, Characterization and Evaluation of Materials, Indium, Electronics and Microelectronics, Instrumentation, Optical and Electronic Materials, Electronic, Optical and Magnetic Materials, Electronics and Microelectronics, Materials Chemistry, silver, Solid State Physics and Spectroscopy, Electrical and Electronic Engineering, Instrumentation, intermetallic reaction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
