Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2020
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Theedhum Nandrum@Dravidian-CodeMix-FIRE2020: A Sentiment Polarity Classifier for YouTube Comments with Code-switching between Tamil, Malayalam and English

Authors: Lakshmanan, BalaSundaraRaman; Ravindranath, Sanjeeth Kumar;

Theedhum Nandrum@Dravidian-CodeMix-FIRE2020: A Sentiment Polarity Classifier for YouTube Comments with Code-switching between Tamil, Malayalam and English

Abstract

Theedhum Nandrum is a sentiment polarity detection system using two approaches--a Stochastic Gradient Descent (SGD) based classifier and a Long Short-term Memory (LSTM) based Classifier. Our approach utilises language features like use of emoji, choice of scripts and code mixing which appeared quite marked in the datasets specified for the Dravidian Codemix - FIRE 2020 task. The hyperparameters for the SGD were tuned using GridSearchCV. Our system was ranked 4th in Tamil-English with a weighted average F1 score of 0.62 and 9th in Malayalam-English with a score of 0.65. We achieved a weighted average F1 score of 0.77 for Tamil-English using a Logistic Regression based model after the task deadline. This performance betters the top ranked classifier on this dataset by a wide margin. Our use of language-specific Soundex to harmonise the spelling variants in code-mixed data appears to be a novel application of Soundex. Our complete code is published in github at https://github.com/oligoglot/theedhum-nandrum.

FIRE 2020, December 16-20, 2020, Hyderabad, India

Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computation and Language, Computation and Language (cs.CL), Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green