Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 1999
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 1999 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parental origin-specific expression of Mash2 is established at the time of implantation with its imprinting mechanism highly resistant to genome-wide demethylation

Authors: Kendraprasad Harpal; Andras Nagy; Andras Nagy; Rudolf Jaenisch; Martina Puchyr; Marina Gertsenstein; Janet Rossant; +2 Authors

Parental origin-specific expression of Mash2 is established at the time of implantation with its imprinting mechanism highly resistant to genome-wide demethylation

Abstract

The Mash2 gene encodes a basic helix-loop-helix transcription factor, which is highly expressed in diploid trophoblast cells of the postimplantation mouse embryo and is required for development of the spongiotrophoblast in order to form a functional placenta. Genomic imprinting of Mash2 has been previously reported; transcriptional inactivation of the paternal wild-type allele in heterozygotes carrying a maternal null allele results in a null-equivalent embryonic lethal phenotype. In order to study the Mash2 imprinting mechanism, we have created a new allele at this locus carrying a targeted insertion of an IRES (internal ribosome entry site)-lacZ cassette within the 3' untranslated region of the gene (referred to as "Mash2-lacZ"). This new allele has made it feasible to monitor paternal Mash2 expression in a wild-type-equivalent background. Our data suggest that parental origin-specific expression of Mash2 begins in the early postimplantation conceptus (5.5 dpc) at the time when trophoblast-specific expression is observed. We also show that the paternal allele is continuously repressed up to 9.5 dpc in the developing ectoplacental cone (EPC) and early chorio-allantoic placenta, with some cells escaping paternal repression. When maternally inherited, lacZ expression from this allele reflects the expression pattern of endogenous Mash2 transcripts up to 8.5 dpc. Furthermore, we have addressed the question of a requirement for DNA methylation for the Mash2 imprinting mechanism by crossing our Mash2-lacZ mice with mice mutant for Dnmt1 (DNA-methyltransferase1). Our results show a partial loss of transcriptional repression of the paternal allele in Dnmt1 deficient background. Interestingly, however, this is not sufficient to eliminate the highly biased parental allele-specific expression of Mash2. Thus, the preferential maternal expression of the gene is still maintained in Dnmt1 null mutant embryos, although methylation analyses demonstrate that the Mash2 locus is highly demethylated in Dnmt1 null mutant embryos. The locus is also highly demythyled in wild-type EPCs. Our results suggest the possibility that a mechanism other than DNA methylation, such as allele-specific chromatin conformation, may be involved in maintenance of parental origin-specific expression of Mash2.

Keywords

Male, Embryology, Genome, Base Sequence, Molecular Sequence Data, Gene Expression Regulation, Developmental, Mice, Transgenic, DNA Methylation, DNA-Binding Proteins, Genomic Imprinting, Mice, Lac Operon, Sequence Homology, Nucleic Acid, Ectoderm, Basic Helix-Loop-Helix Transcription Factors, Animals, Humans, CpG Islands, Female, Embryo Implantation, In Situ Hybridization, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%
hybrid