Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Intermembrane Space Loop of Subunit b (4) Is a Major Determinant of the Stability of Yeast Oligomeric ATP Synthases

Authors: Jacques Vaillier; Théodore Weimann; Bénédicte Salin; Jean Velours;

The Intermembrane Space Loop of Subunit b (4) Is a Major Determinant of the Stability of Yeast Oligomeric ATP Synthases

Abstract

The involvement of the b-subunit, subunit 4 in yeast, a component of the peripheral stalk of the ATP synthase, in the dimerization/oligomerization process of this enzyme was investigated. Increasing deletions were introduced by site-directed mutagenesis in the loop located in the mitochondrial intermembrane space and linking the two transmembrane (TM) segments of subunit 4. The resulting strains were still able to grow on nonfermentable media, but defects were observed in ATP synthase dimerization/oligomerization along with concomitant mitochondrial morphology alterations. Surprisingly, such defects, already depicted in the absence of the so-called dimer-specific subunits e and g, were found in a mutant harboring a full amount of subunit g associated to the monomeric form of the ATP synthase. Deletion of the intermembrane space loop of subunit 4 modified the profile of cross-linking products involving cysteine residues belonging to subunits 4, g, 6, and e. This suggests that this loop of subunit 4 participates in the organization of surrounding hydrophobic membranous components (including the two TM domains of subunit 4) and thus is involved in the stability of supramolecular species of yeast ATP synthase in the mitochondrial membrane.

Keywords

Molecular Sequence Data, Intracellular Membranes, Saccharomyces cerevisiae, Mitochondrial Proton-Translocating ATPases, Protein Structure, Tertiary, Mutagenesis, Enzyme Stability, Animals, Cattle, Amino Acid Sequence, Cysteine, Dimerization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?