
Three-dimensional human pose estimation is widely applied in sports, robotics, and healthcare. In the past five years, the number of CNN-based studies for 3D human pose estimation has been numerous and has yielded impressive results. However, studies often focus only on improving the accuracy of the estimation results. In this paper, we propose a fast, unified end-to-end model for estimating 3D human pose, called YOLOv5-HR-TCM (YOLOv5-HRet-Temporal Convolution Model). Our proposed model is based on the 2D to 3D lifting approach for 3D human pose estimation while taking care of each step in the estimation process, such as person detection, 2D human pose estimation, and 3D human pose estimation. The proposed model is a combination of best practices at each stage. Our proposed model is evaluated on the Human 3.6M dataset and compared with other methods at each step. The method achieves high accuracy, not sacrificing processing speed. The estimated time of the whole process is 3.146 FPS on a low-end computer. In particular, we propose a sports scoring application based on the deviation angle between the estimated 3D human posture and the standard (reference) origin. The average deviation angle evaluated on the Human 3.6M dataset (Protocol #1–Pro #1) is 8.2 degrees.
Chemical technology, Posture, Convolutional Neural Network, Pose-based Sports Application, TP1-1185, Robotics, YOLOv5; HR; 2D/3D human pose estimation; Convolutional Neural Network; Temporal Convolution Model; Pose-based Sports Application, Article, YOLOv5, Temporal Convolution Model, HR, 2D/3D human pose estimation, Humans
Chemical technology, Posture, Convolutional Neural Network, Pose-based Sports Application, TP1-1185, Robotics, YOLOv5; HR; 2D/3D human pose estimation; Convolutional Neural Network; Temporal Convolution Model; Pose-based Sports Application, Article, YOLOv5, Temporal Convolution Model, HR, 2D/3D human pose estimation, Humans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
